

TAMIBIA UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 5
COURSE NAME: GENERAL CHEMISTRY 1B	COURSE CODE: GNC502S
SESSION: JANUARY 2020	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER								
EXAMINER(S)	DR. EUODIA HESS							
	DR. MARIUS MUTORWA							
MODERATOR:	DR. JULIEN LUSILAO							

INSTRUCTIONS						
1.	Answer ALL the questions.					
2.	Write clearly and neatly.					
3.	Number the answers clearly					
4.	All written work must be done in blue or black ink and sketches can					
	be done in pencil					
5.	No books, notes and other additional aids are allowed					

THIS QUESTION PAPER CONSISTS OF 12 PAGES (Including this front page and attachments)

[50]

QUESTION 1: Multiple Choice Questions

[50]

- There are 25 multiple choice questions in this section. Each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.
- 1. To which of the following causes could the slow rate of a chemical reaction be attributed to?
 - A. a low activation energy
 - B. a high activation energy
 - C. the presence of a catalyst
 - D. the temperature is high
 - E. the concentrations of the reactants are high
- 2. The steps below represent a proposed mechanism for the catalysed oxidation of CO by O₃.

Step 1:
$$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$$

Step 2: NO
$$(g)$$
 + O₃ (g) \Rightarrow NO₂ (g) + O₂ (g)

What are the overall products of the catalysed reaction?

- A. CO₂ and O₂
- B. NO and CO₂
- C. NO₂ and O₂
- D. NO and O₂
- E. NO₂ and CO₂
- 3. The oxidation number of each chromium atom in $Cr_2O_7^{2-}$ is:
 - A. +5
 - B. +6
 - C. +7
 - D. +12
 - E. None of the above

- 4. In which of the following unbalanced reactions does chromium undergo oxidation?
 - A. $Cr^{3+} \rightarrow Cr$
 - B. $Cr^{3+} \rightarrow Cr^{2+}$
 - C. $Cr^{3+} \rightarrow Cr_2O_7^{2-}$
 - D. None of the above
 - E. $Cr^{3+} \rightarrow Cr^{0}$
- 5. For which of the following chemical changes does the heat of reaction (ΔH) correspond to a heat of formation ($\Delta H_{formation}$)?
 - A. $N(g) + 3 H(g) \rightarrow NH_3(g)$
 - B. $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$
 - C. $C(g) + O(g) \rightarrow C$
 - D. $\frac{1}{2} N_2(g) + \frac{3}{2} H_2(g) \rightarrow NH_3(g)$
 - E. None of the above
- 6. The pH of a 1.25×10^{-3} M NaOH solution is:
 - A 7.00
 - B 2.90
 - C 11.10
 - D 10.90
 - E 3.10
- 7. Which of the following describes the relationship between $[H_3O^+]$ and $[OH^-]$?
 - A. $[H_3O^+][OH^-] = 14.00$
 - B. $[H_3O^+] + [OH^-] = 14.00$
 - C. $[H_3O^+][OH^-] = 1.0 \times 10^{-14}$
 - D. $[H_3O^+] + [OH^-] = 1.0 \times 10^{-14}$
 - E. None of the above

8. A buffer solution was prepared by mixing 100 mL of a 1.2M NH₃ solution and 400 mL of a 0.5M NH₄Cl solution. What is the pH of this buffer solution, assuming a final volume of 500 mL and $K_b = 1.8 \times 10^{-5}$?

A. 1.08

B. 4.96

C. 5.8

D. 9.03

E. 8

9. Which of the following is true regarding the relative molar rates of disappearance of the reactants and the appearance of the products?

$$2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$$

I. N_2 appears at the same rate that H_2 disappears.

II. H₂O appears at the same rate that NO disappears.

III. NO disappears at the same rate that H_2 disappears.

A. I only.

B. I and II only.

C. I and III only.

D. II and III only.

E. I, II and III

10. Write the appropriate equilibrium constant expression K_c for the following reaction:

$$2CO(g) + O_2(g) \leftrightharpoons 2CO_2(g)$$

A. $K_c = k[CO]_2[O_2]$

B. $K_c = [CO_2] / [CO] [O_2]$

C. $K_c = [CO]^2 [O_2] / [CO_2]$

D. $K_c = [CO_2]^2 / [CO]^2 [O_2]$

E. None of the above

11. Which two bonds are least similar in polarity?

A. Al-Cl and I-Br

B. O-F and CI-F

C. B-F and CI-F

D. I-Br and Si-Cl

E. C-Cl and Ge-Cl

12. In the Lewis structure of HCO ₃ -, the formal charge on H is and the formal charge on C is
A1, -1
B. 0, 0
C. 0, -1
D. +1, -1
E1, +1
, ·
13. How many different types of resonance structures can be drawn for the ion 50_3^{2-} where all atoms satisfy the octet rule?
A. 1
B. 2
C. 3
D. 4
E. 5
14. After drawing the Lewis dot structure of HOClO ₂ , pick the INCORRECT statement of the following.
A. The oxygen bonded to the hydrogen has two lone pairs.
B. The oxygens not bonded to hydrogen have three lone pairs.
C. The O-Cl bonds are all double bonds.
D. The H-O bond is a single bond.
E. Chlorine has a full octet.
15. Which of the pairs of molecules below have the same hybridization on the central atom? (The central atom is underlined in each molecule.)
A. <u>C</u> O ₂ , <u>C</u> H ₄
B. H ₂ CO, <u>Be</u> H ₂
C. <u>B</u> Cl ₃ , H <u>N</u> O
D. H ₂ O, H <u>F</u>
E. <u>N</u> H ₃ , H <u>N</u> O

16. Find the correct stereochemistry for the following alkenes:

- A. \mathbf{A} is Z, \mathbf{B} is Z, \mathbf{C} is E, \mathbf{D} is E
- B. \mathbf{A} is \mathbf{Z} , \mathbf{B} is \mathbf{E} , \mathbf{C} is \mathbf{Z} , \mathbf{D} is \mathbf{E}
- C. **A** is *E*, **B** is *E*, **C** is *Z*, **D** is *E*
- D. **A** is *E*, **B** is *E*, **C** is *Z*, **D** is *Z*
- E. **A** is *Z*, **B** is *Z*, **C** is *E*, **D** is *Z*

17. Which is the correct Lewis structure for acetic acid (CH_3CO_2H)?

- A. a
- B. b
- C. c
- D. d
- E. none of the above

18. For which of the structures below does carbon show the correct orbital hybridization?

$H_2C=O$	$H_2C=CH_2$	$\mathrm{CH_4}$	HC≡N	0=C=O
sp I	${ m sp}^2$ II	sp^2 III	sp IV	sp V

- A. II, IV and V
- B. II, III and IV
- C. I, II and III
- D. I, IV and V
- E. II, IV and V

19. Which of the following statements concerning lattice energy is incorrect?
A. MgO has a larger lattice energy than NaF.
B. The lattice energy for a solid with 2+ and 2– ions should be two times that for a solid with 1+ and 1– ions.
C MgO has a larger lattice energy than LiE

- MgO has a larger lattice energy than LiF.
- D. Lattice energy is often defined as the change in energy that occurs when an ionic solid is separated into isolated ions in the gas phase.
- E. All of these are true.

20. Which of the following compounds has the most ionic bondi	ng (i.e. has the highest percentage
of ionic character)?	o (was made in a manage per centrage

- A. CaF₂
- B. Lil
- C. OF₂
- D. CsF
- E. LiF

21. What is the C—C—H bond angle in H₂CCO?

- A. 109°
- B. 180°
- C. 120°
- D. 90°
- E. 45°

22. Which of the following statements is correct concerning the electron configuration [Ne] $3s^{1}3p^{1}$?

- A. It may represent a ground-state electron configuration of a Al⁺ cation.
- B. It may represent an excited-state electron configuration of a Mg atom.
- C. It may represent an excited-state electron configuration of a Ne⁻ anion.
- D. It may represent a ground-state electron configuration of a Mg⁺ cation.
- E. None of the above is correct

- 23. A nonpolar bond will form between two ______ atoms of _____ electronegativity.
 - A. different, opposite
 - B. identical, different
 - C. different, different
 - D. identical, equal
 - E. None of the above is correct
- 24. Which of the following compounds does not contain a C=O bond?
 - A. Ketones
 - B. Aldehydes
 - C. Esters
 - D. Ethers
 - E. All contain the C=O bond
- 25. Give the IUPAC name for the following structure.

- A. 2-methyl-3-ethylheptane
- B. 3-ethyl-2methylheptane
- C. 5-isopropyloctane
- D. 4-isopropyloctane
- E. 2-methyl-3-propylheptane

END OF SECTION A

SF	CT	ON	R:
			•

[50]

QUESTION 1:

[5]

Assign the oxidation states for the underlined atom in each of the following:

- a. <u>Ni</u>O₂
- b. **Fe**₃O₄
- c. XeOF₄
- d. (NH₄)₂HPO₄
- e. <u>C</u>O

QUESTION 2:

[5]

A buffer solution contains 0.25 M NH $_3$ ($K_b = 1.8 \times 10^{-5}$) and 0.40 M NH $_4$ Cl. Calculate the pH of the solution.

QUESTION 3:

[10]

a. What are the factors affecting reaction rates?

(4)

Relate the rates for the disappearance of reactants and formation of products for the following reaction:

 $PH_3(g) \rightarrow P_4(g) + H_2(g)$

c. Sucrose $(C_{12}H_{22}O_{11})$ decomposes to fructose and glucose in acid solution with rate law:

Rate =
$$k[C_{12}H_{22}O_{11}]$$
 $k = 0.216 h^{-1}$ at 25 °C

What is the half-life of sucrose at this temperature?

(3)

QUESTION 4:

[5]

 NO_2 can exist in equilibrium with colourless gas N_2O_4 . K_c = 170 at 298K.

$$NO_2(g) \leftrightarrow N_2O_4(g)$$

Suppose the concentration of NO_2 is 0.015 M and concentration of N_2O_4 is 0.025 M.

- a. If the system is not in equilibrium, will Q be larger than, smaller than or equal to Kc? (2)
- b. In which direction will the reaction proceed to achieve equilibrium?

(3)

QUESTION 5:

[9]

Consider the Lewis structure for ethyl acetate below, used as a solvent and aroma enhancer.

- 5.1 How many valence electrons are used to make the sigma bonds in the molecule? (3)
- 5.2 What is the hybridization at each of the numbered atoms (i.e. C1, C2 and O3)? (6)

QUESTION 6 [8]

Many classes of organic compounds undergo characteristic types of reactions.

Identify the type of organic reaction for the transformations below. (8)

(a)
$$CH_3CH_2Br + NaCN \longrightarrow CH_3CH_2CN (+ NaBr)$$

(b) OH
$$\frac{Acid}{catalyst}$$
 (+ H₂O)

(d)
$$+ O_2N-NO_2 \xrightarrow{Light} NO_2$$
 $(+ HNO_2)$

QUESTION 7

[8]

Identify the functional groups in the following molecules.

(8)

THE END

GOODLUCK

USEFUL CONSTANTS:

Gas constant, R = $8.3145 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ = $0.083145 \text{ dm}^3 \cdot \text{bar} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ = $0.08206 \text{ L} \text{ atm mol}^{-1} \cdot \text{K}^{-1}$

 $1 \text{ Pa} \cdot \text{m}^3 = 1 \text{ kPa.L} = 1 \text{ N} \cdot \text{m} = 1 \text{ J}$

1 atm = 101 325 Pa = 760 mmHg = 760 torr

Avogadro's Number, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Planck's constant, $h = 6.626 \times 10^{-34} \text{ Js}$

Speed of light, $c = 2.998 \times 10^8 \text{ ms}^{-1}$

PERIODIC TABLE OF THE ELEMENTS

		1		_	1			T			_		_	1	_	-			
18	He 4.00260	2	Ze	20.179	82	Ar	39.948	36	Kr	83.8	54	Xe	131.29	98	R	(222)	118	Uuo	
	17	6	1	15.9994 18.9984	17	ひ	35.453	35	Br	79.904	53	_	126.9	85	At	(210)			
	16	∞	0	15.9994	16	S	32.06	34	Se	78.96	52	Te	127.6	84	Po	(209)	116	Unh	
	15	7	Z	14.0067	15	Ь	30.9738	33	As	74.9216	51	Sp	121.75	83	Bi	208.908			
	14	9	ŭ	12.011	14	Si	28.0855	32	පු			Sn	118.69	82	Pb		114	Und	
	13	5	B	10.81	13	- IV	26.9815 28.0855	31	Ga	69.72	49	I	114.82	81	E	204.383			
							12	30	Zn	65.38	48	Cq	112.41	80	Hg	200.59	112	Unb	(569)
							11	29	Cn	63.546	47	Ag	107.868	79	Au		1111	Unn	(272)
							10	28	Z	58.69	46	Pd	106.42	78	Pt	195.08	110	Unn	(569)
							6	27	ථ	58.9332	45	R	102.906	77	H	192.22	109	Mt	(268)
						į	∞	26	Fe	55.847	44	Ru	101.07	9/	ő	190.2	108	Hs	
						1	7	25	Mn	54.9380	43	Tc	(86)	75	Re	186.207	107	Bh	(264)
						,	9	24	Ċ	51.996	42	Mo	95.94	74			106	S	(263)
						1	n	23	>	50.9415	41	g	92.9064	73	Ta	180.948	105	Dp	(262)
						٠	4	22		47.88	40	Zr	2	72	Hſ	178.49	104	R	(261)
			8			,	2	21	Sc	44.9559	39	X	88.9059	71	Ę	174.967	103	Ľ	(260)
	2	4	Be	9.01218	12	Mg	24.305	20	రా	40.08	38		~ا	99		-	 	Ra	226.025
	H 1.00794	3	5	6.941		Na	22.9898 24.305	19	¥	39.0983	37	Rb	85.4678	25	ű	132.905	87	Fr	(223)

		173.04	_	Z	
69	Tm	166.934	101	Md	(258)
89	E.	167.26	100	Fm Md	(257)
29	Ho	158.925 162.50 161.930 167.26 166.934	66	Es	(252)
99	Dv	162.50		Cf	
65	Tb	158.925	97	Bk	(247)
64	P.S	157.25	96	Cm	(247)
63	Sm Eu Gd	151.96	56	Am	(243)
62	Sm	150.36	94	Pu	(244)
19	Pm	(145)	93	Z	237.048
09	PN	144.24	92	Þ	238.029
29	La Ce Pr Nd	140.908	91	Pa	231.036
28	ပီ	140.12	90	Th	232.038
/c	La	138.906	86	Ac Th Pa U Np	227.028
Landanius;			Actinides:		